
RESEARCH ARTICLE
10.1002/2015WR017295

Parameter estimation and prediction for groundwater
contamination based on measure theory
S. A. Mattis1, T. D. Butler2, C. N. Dawson1, D. Estep3, and V. V. Vesselinov4

1Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, USA, 2Department of
Mathematical and Statistical Sciences, University of Colorado Denver, Denver, Colorado, USA, 3Department of Statistics,
Colorado State University, Fort Collins, Colorado, USA, 4Computational Earth Science Group, Earth and Environmental
Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA

Abstract The problem of groundwater contamination in an aquifer is one with many uncertainties. Prop-
erly quantifying these uncertainties is essential in order to make reliable probabilistic-based predictions and
decisions regarding remediation strategies. In this work, a measure-theoretic framework is employed to
quantify uncertainties in a simplified groundwater contamination transport model. Given uncertain data
from observation wells, the stochastic inverse problem is solved numerically to obtain a probability measure
on the space of unknown model parameters characterizing groundwater flow and contaminant transport in
an aquifer, as well as unknown model boundary or source terms such as the contaminant source release
into the environment. This probability measure is used to make predictions of future contaminant concen-
trations and to analyze possible remediation techniques. The ability to identify regions of small but nonzero
probability using this method is illustrated.

1. Introduction

Contamination of groundwater aquifers is a significant problem in many locations around the world
[R€ugner et al., 2006; National Research Council, 2013]. In many instances, there may be various remedia-
tion strategies for reducing contamination levels that are economically viable and technically sound.
However, determination of an optimal remediation strategy is complicated by many factors. Most reme-
diation strategies are subject to governmental budget constraints [National Research Council, 1999,
2013], and the actual outcomes of various plausible remediation strategies are often uncertain for a vari-
ety of reasons, e.g., due to the limited information in characterizing the past, current, and future nature
and extent of contaminants in the environment. This causes substantial uncertainties in future concen-
trations predicted from models under different remediation scenarios. There are many additional uncer-
tainties related to the contaminant transport and fate including the identification of the magnitude, size,
and duration of the contaminant release in the environment. Further complicating the problem of mak-
ing accurate predictions are inherent uncertainties in the geological, hydrological, and biogeochemical
conditions of the affected aquifer due to limited characterization data. Consequently, in order to make
useful predictions of concentrations of a contaminant, its effect on the environment, and to best plan for
remediation, quantifying uncertainties impacting the contaminant transport and fate is essential. The
process for quantifying uncertainties affecting real-world decisions regarding complex physical proc-
esses requires the fusion of data-driven and model-driven techniques to incorporate what little informa-
tion is known.

There has been a great deal of work regarding the development of theoretical and computational frame-
works for contaminant remediation incorporating uncertainties in the parameters and models [see Bolster
et al., 2009; Agostini et al., 2009a, 2009b; Argent et al., 2009; Tartakovsky, 2007; Jordan and Abdaal, 2013;
National Research Council, 1999]. Often, there is uncertainty in the underlying flow and transport models
and model inadequacy studies can improve results [Ye et al., 2004; Beven and Westerberg, 2011]. There
have been many attempts to incorporate model and prediction uncertainty into the decision-making pro-
cess for remediation [Caselton and Luo, 1992; Hipel and Ben-Haim, 1999; Bolster et al., 2009; Reeves et al.,
2010; Harp and Vesselinov, 2013; O’Malley and Vesselinov, 2014]. It is common to characterize the uncer-
tainties in groundwater contamination models probabilistically [Delhomme, 1979; Dagan, 1982; Wagner
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and Gorelick, 1987; Abbaspour et al., 1997; Keating et al., 2010], where a probability distribution is associ-
ated with each parameter separately. Representing probabilities in high dimensions can be challenging,
but some recent methods have increased computational efficiency [Tonkin and Doherty, 2009; Laloy and
Vrugt, 2012].

We present a recently developed measure-theoretic framework for the formulation and solution to a physi-
cally meaningful stochastic inverse problem for quantifying uncertainties in a physics-based model [Breidt
et al., 2011; Butler et al., 2012; Butler and Estep, 2013; Butler et al., 2014; T. Butler et al., Solving stochastic
inverse problems using sigma-algebras on contour maps, 1407.3851, 2014]. A computational algorithm is
described in detail and applied to a mathematical model for groundwater contamination. The inverse solu-
tion is a probability measure that is consistent with the unique solution in the space of parameter equiva-
lence classes defined by the physics-based map from parameters to data. By consistent, we mean that
propagation of the probability measure through the computational model exactly reproduces the probabil-
ity measure on the data space. These equivalence classes can be identified as generalized contours in the
original parameter space. We demonstrate how the probability measure can be used to identify and
approximate the probability of failure events for various remediation strategies in terms of reducing future
contaminant levels below the maximum concentration limit (MCL).

The use of generalized contours in the formulation and solution of the stochastic inverse problem is quite
different from other approaches that have appeared in the literature. A complete literature review is infeasi-
ble, so we limit the comparison below to popular approaches focusing on similar applications. Bayesian and
Generalized Likelihood Uncertainty Estimation (GLUE) approaches have proven to be among the most pop-
ular approaches for quantifying uncertainties in hydrologic models and environmental problems [see Freer
and Beven, 1996; Leube et al., 2012; Nowak et al., 2010; Troldborg et al., 2010; Vrugt et al., 2008; Beven and
Freer, 2001]. The Bayesian and GLUE approaches replace the map from uncertain parameters to observa-
tions defined by the physics-based model with a statistical map called the likelihood function. After specify-
ing a prior distribution on the parameters, the objective is to interrogate a posterior distribution defined in
terms of the likelihood and prior distributions often by using a Markov Chain Monte Carlo (MCMC) sam-
pling. In other words, the inverse problem is formulated in terms of a statistical problem involving the fit of
model outputs to data, and typical objectives are either to produce a set of samples generated from the
posterior distribution or to determine the parameters of maximum likelihood. The maximum likelihood can
often be reinterpreted as the minimum of a misfit functional which defines a so-called ‘‘regularized’’ solution
to the inverse problem (e.g., see the sequence of papers [Carrera and Neuman, 1986a,b,c] for the methods,
algorithms, and applications of this idea). In regularization, one seeks to minimize a misfit functional defined
using both residual errors along with a ‘‘penalty’’ term. The covariances of the likelihood and prior distribu-
tions in a Bayesian formulation can often be used to define the norms used for the residual errors and pen-
alty term, respectively. Since the regularized solution is the solution to an optimization problem,
interpretation of the obtained results often involve some type of sensitivity analysis [see Carrera et al., 2005;
Carrera and Neuman, 1986a; Mayer et al., 2002]. By design, the misfit functionals in regularization
approaches and the related posterior distributions in Bayesian approaches have completely different con-
tour structures than the generalized contours of the physics-based map between model parameters and
observational data. The implication is that the solutions to the regularization and Bayesian approaches solve
a different inverse problem and have completely different interpretations than what is obtained by the
measure-theoretic formulation and solution of the inverse problem.

The paper is organized as follows. In section 2, we describe the contaminant transport model, physical
domain, and model parameters that are the focus of this work. In section 3, we summarize the measure-
theoretic framework and computational algorithm used in the rigorous probabilistic analysis of uncertain-
ties. In section 4, we provide numerical results demonstrating this probabilistic analysis on the contaminant
transport model. A low-dimensional problem is solved to illustrate the effect of the underlying geometry
defined by the choice of quantities of interest on the solution to the stochastic inverse problem. A higher-
dimensional stochastic inverse problem is then solved and used to quantify uncertainties in both model
and source parameters. The solution of the higher-dimensional stochastic inverse problem is used to make
predictions about contaminant plumes when no remediation is performed and for a variety of remediation
strategies. We focus the analysis of predictions specifically on reducing contaminant levels below the MCL.
Concluding remarks follow in section 5.

Water Resources Research 10.1002/2015WR017295

MATTIS ET AL. PARAMETER ESTIMATION AND PREDICTION 7609



2. Contaminant Transport Model and Parameters

Contaminant transport in groundwater aquifers is a complex process and its modeling is associated with a
great deal of underlying uncertainty. We demonstrate the benefit of quantifying uncertainties using the
measure-theoretic framework in section 4.4 by comparing the resulting probabilistic predictions to those
obtained from an uninformed predictive analysis. In order to explore the entire set of possible parameters
and identify regions of high probability in an uninformed way, typically, a large number of forward model sol-
utions are computed. In order to do this efficiently, we use a relatively simple analytical model with many
sources of uncertainty [Wang and Wu, 2009] as a forward model. We note that using a more complicated
model presents no theoretical difficulties in the measure-theoretic approach while the practical approximation
issues can be addressed directly using adaptive sampling based on computable error estimates/bounds (T.
Butler et al., Solving stochastic inverse problems using sigma-algebras on contour maps, 1407.3851, 2014), but
this is beyond the scope of this work. In section 3.3, we provide a general description of the convergence and
error analysis in the measure-theoretic approach and compare to the more traditional sampling methods
using posterior distributions obtained via a Bayesian formulation.

Some assumptions are made about the model domain and setup in order to simplify the model as shown
in Figure 1. We assume that the domain is infinite in the horizontal (x-y) plane and semiinfinite in the verti-
cal (z) direction, and that the region of contaminant release (the contamination source) is a rectangular box,
and the volumetric mass released per unit time (the mass flux) is uniform within the source at a given time.
The groundwater flow field is steady and uniform in the horizontal direction. The contaminant undergoes
first-order decay, accounting for a variety of geochemical processes that might be reducing the contami-
nant concentration (e.g., first-order chemical reactions) [Petrucci et al., 1993]. We assume there is no contam-
inant in the domain at the initial time, and the aquifer hydraulic conductivity and porosity are
homogeneous throughout the domain. The resulting contaminant transport is modeled using a three-
dimensional advection-dispersion-reaction equation:
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where C ½ML23� is the contaminant concentration. The model parameters ax, ay, and az ½L� are the dispersiv-
ities in the x, y, and z directions, respectively, u ½LT21� is the pore groundwater flow velocity along the x axis,
d ½T21� is the first-order constant for decay, n ½L3=L3� is the porosity of the aquifer, and I ½ML23T21� is the
contaminant mass flux. The source I is defined by
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where I0 is a given constant. The source parameters defining I include the location of the center of the con-
taminant source at x (m), y (m), and z0 (m) and the size of the source xs (m), ys (m), and z1 (m) (in the x, y,
and z directions, respectively). The remaining source parameters are t0 (year) the initial time of the source,
t1 (year) the final time of the source, and f ðkg=yearÞ the contaminant flux within the source. Under the
given assumptions, there exists an analytical solution:
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where j is a time scaling factor for
dispersivity. If j 5 1, there is no
time scaling for dispersivity. If
j > 1, the dispersivity scales with
the travel time. Scaling of the dis-
persivity for the case of transport in
porous geologic media has been
frequently observed in field hydro-
geologic studies [Neuman, 1990;
Gelhar et al., 1992; Schulze-Makuch,
2005].

By equation (1), the source I and
the solution Cðx; y; z; tÞ, there are a
large number of parameters that
determine the concentration of the
contaminant at a given point in the
space-time domain even for this

simplified model. They can be divided into two categories: source and transport parameters. Source
parameters characterize the contaminant release into the aquifer. Transport parameters represent the
underlying transport processes in the aquifer. The measure-theoretic framework for quantifying uncer-
tainties formulates the stochastic inverse problem with respect to a parameter domain containing all of
these model and source parameters. Generally these parameters are not known exactly or even esti-
mated. In practice, the available information consists of observations of contaminant concentrations at
specific points in space-time. However, under reasonable assumptions about the source and the proper-
ties of the aquifer, intervals in which the parameter values are contained may be determined or
estimated.

3. Measure-Theoretic Framework for Uncertainty Quantification

This section summarizes the mathematical methodology and numerical methods for a measure-theoretic
framework for stochastic inverse problems for physics-based maps as formulated by Breidt et al. [2011],
Butler et al. [2012], Butler and Estep [2013], Butler et al. [2014], and T. Butler et al. (Solving stochastic inverse
problems using sigma-algebras on contour maps, 1407.3851, 2014). Below, we emphasize the core deter-
ministic forward and inverse maps at the heart of all the computations involving uncertainties modeled
with probability measures. In order to make these ideas less abstract, we connect the notation and concepts
to the model described above.

We let K denote the space of possible (input) parameters for the model (including source parameters)
and Q be a map from the parameter space K to the output space D : 5QðKÞ. Here D represents
contaminant concentrations given by the map Q defined by evaluating Cðx; y; z; tÞ at specific points in
space-time that depend implicitly on the choice of parameters. The components of Q are referred to as
‘‘quantities of interest’’ (QoI) and Q is called the QoI map. In an idealized case, Q would be a bijection
(i.e., a one-to-one and onto map) between K and D. This idealized situation is rarely the case even
when K and D have the same dimension. Typically, there is a set of points in K that are mapped to the
same point in D by Q, i.e., the map Q21 is set-valued. For example, increasing the porosity while decreas-
ing the contaminant mass flux may result in no difference in observed contaminant concentrations.
Moreover, the dimension of D is often less than that of K, which implies that the set-valued inverses are
defined by a collection of lower-dimensional manifolds embedded in K that we call generalized con-
tours. In either case, it is impossible to assign a distinct parameter to a distinct output datum. We illus-
trate this idea in the left plot in Figure 2. Putting this in the stochastic setting where parameters and/or
data are random variables does not change the fundamental issue that the map Q21 is set-valued. Solv-
ing the stochastic inverse problem involves computing a probability measure on the original parameter
space K, given a probability measure on D and the set-valued map Q21 that maps to generalized con-
tours in K.

Figure 1. Configuration of contaminant transport model.
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3.1. Formulation of the Stochastic Inverse Problem
For the contaminant transport model, the inverse of any particular observable contaminant vector of concen-
trations is defined by the set of all transport and source parameters that can possibly produce these contami-
nant concentrations. This implies that the map Q21 maps to sets instead of points in K. We call any particular
inverse set a generalized contour. We denote by L the collection of unique generalized contours in K.

We consider the case when Q is a map between K � Rn and D � Rd with n > d � 1. This is the more chal-
lenging case than when n 5 d although that case is easily handled within this framework and the resulting
algorithm. It is possible to uniquely represent and index each generalized contour using a representation of
L as a (piecewise-defined) d-dimensional manifold embedded in K. For the contaminant transport model,
this means that there is a set of transport and source parameters such that the mapping is one-to-one
between this set and all observable contaminant levels.

Suppose that a probability measure PD with density qD is defined on D (e.g., representing uncertainty in
observed contaminant concentration levels), so that for any event B in D, the probability of B is
PDðBÞ5

Ð
BqD. Since QL : L ! D is a bijection, there is a unique inverse probability measure PL with density

qL induced on L by

PLðAÞ5
ð

A
qL5

ð
QLðAÞ

qD5PDðQLðAÞÞ; (4)

for any event A in L. We emphasize that the solution of the stochastic inverse problem in L is uniquely
specified within this measure-theoretic framework.

Note that qL provides a method of computing probabilities of events in L which correspond to generalized
contour events in K. The objective is to calculate the probability of more arbitrary events in K such as gen-
eralized rectangles or ellipsoids which are unlikely to be approximated well by generalized contour events.
We make use of the Disintegration Theorem [Butler et al., 2014; Dellacherie and Meyer, 1978] and a standard
ansatz to compute a probability measure PK in terms of an approximate density qK that is consistent with
PD. By saying PK is consistent with PD, we mean that if B is any event in D (so Q21ðBÞ is a generalized con-
tour event in K), then

ð
Q21ðBÞ

qKðkÞdlK5PKðQ21ðBÞÞ5PDðBÞ5
ð

B
qDdlD: (5)

We summarize the stochastic inverse problem as the following: given a parameter space K, a data space D, a
map Q : K! D, and a probability measure PD on D, determine a probability measure defined on K satisfying
equation (5). For the contaminant transport problem, this means the problem is to determine a probability

Figure 2. (left) A simple two-to-one QoI map with two parameters k1 and k2 with several contours illustrated identifying specific set-valued inverses. (right) The regions between the
black curves correspond to two distinct adjacent output intervals for the QoI map. The highlighted Voronoi cells in yellow and blue denote the approximations to these contour regions.
The red rectangle indicates a possible event A for which an approximate probability may be computed.
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measure on the transport and source parameters such that mapping this probability measure through the model
produces the same probability measure as the one defined on the observable contaminant concentrations.

3.2. Numerical Solution to the Stochastic Inverse Problem
Suppose the probability density function qD associated with PD is known. Let fDkgM

k51 be a partition of D,
and let pk be the probability of Dk. Let A be an event in K. We thus have the approximation

ð
QðAÞ

qDdlD �
X

Dk�QðAÞ
pk: (6)

Let fkðjÞgN
j51 be a collection of N points in K, which implicitly defines an n-dimensional Voronoi tessellation fV j

gN
j51 associated with the points. For example, given k 2 K; k 2 Vk if kðkÞ is the closest kðjÞ to k. Using the implic-

itly defined Voronoi tessellation and the partitioning ofD, Algorithm 1 can be used to calculate the probability
q̂K;j associated with the implicitly defined Voronoi cell V j . We illustrate the steps of Algorithm 1 using the sim-
ple quadratic QoI map from a 2-D parameter space (n 5 2) to a 1-D data space (d 5 1) shown in Figure 2. In
practice, we only construct the samples in step 1 of Algorithm 1 and the Voronoi tessellation of step 2 is implic-
itly defined by the set of samples from step 1. However, for pedagogical reasons, it is easier to visualize the
remaining steps of the algorithm using the explicit Voronoi tessellation as shown in the right plot of Figure 2.
Step 3 of the algorithm simply defines which data value is associated with each Voronoi cell. Step 4 defines a
partitioning of the data space which corresponds to a unique collection of generalized contour events in K. In
the right plot of Figure 2, the regions between the black curves represent the exact contour events correspond-
ing to two subintervals from a possible partition ofD. The probabilities associated with these regions are deter-
mined by qD as indicated in step 5 of Algorithm 1. Steps 6 and 7 are used to identify which Voronoi cells are
used to approximate the exact contour events implicitly defined by step 4. In the right plot of Figure 2, we use
yellow and blue highlighting to distinguish which collections of Voronoi cells are identified as approximating
the two contour events with boundaries given by the black curves. Note that steps 8 and 9 of Algorithm 1
determine the probability of each individual Voronoi cell according to the ansatz discussed above, where the
volume is determined in step 8 and the ansatz is applied in step 9. Note that in steps 5 and 8 in Algorithm 1, we
must approximate integrals. The computation of step 8 uses Monte Carlo integration in high-dimensional
spaces. We then approximate the probability of any event A � K using a counting measure

PKðAÞ �
X
kðjÞ2A

q̂K;j: (7)

Thus, we obtain an approximation to the probability measure on K that solves the stochastic inverse prob-
lem as described above and satisfies equation (5). In the right plot of Figure 2, we consider A defined as the
region interior to the red rectangle and the probabilities of the Voronoi cells have all been determined. By
simply identifying the samples in A and summing the probabilities associated with these samples to
approximate P(A), we can reinterpret this counting measure approximation as a type of Monte Carlo
approximation to PKðAÞ.

Algorithm 1. Numerical Approximation of Inverse Probability Density

1. Choose points fkðjÞgN
j51 2 K.

2. Denote the associated Voronoi tessellation fV jgN
j51 � K.

3. Evaluate Qj5QðkðjÞÞ for all kðjÞ; j51; . . . ;N.

4. Choose a partitioning of D; fDkgM
k51 � D.

5. Compute pk �
Ð

Dk
qDdlD; for k51; . . . ;M.

6. Let Ck5fjjQj 2 Dkg for k51; . . . ;M.

7. Let Oj5fkjQj 2 Dkg; for j51; . . . ;N.

8. Let Vj be the approximate measure of V j , i.e., Vj �
ð
V j

dlðV jÞ for j51; . . . ;N.

9. Set q̂K;j5ðVj=
X
i2COj

ViÞpOj ; j51; . . . ;N.
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3.3. Computational Complexity and Error Analysis
As described in section 1, the inverse problems formulated in the measure-theoretic framework and Bayes-
ian frameworks are fundamentally different, which complicates any direct comparisons between the solu-
tion methods. However, if we assume there are no hyperparameters used in the definitions of the prior
distributions for the Bayesian formulation, then the solutions to either problem formulation are (different)
probability measures on the (same) parameter space. If the goal of generating samples from the Bayesian
posterior distribution is to approximate probabilities (i.e., measures) of events, then it may at least be possi-
ble to compare the cost of approximating the solutions to within some specified accuracy with sample-
based approaches. A rigorous analysis of the computational cost for numerical methods for either problem
formulation is not the focus of this work. Here we summarize the basic components of a convergence and
error analysis to describe how such comparisons of the computational cost associated with using Algorithm 1
can be made to the computational cost of using a standard Monte Carlo sampling scheme to numerically
approximate posterior distributions using a Bayesian framework. For a more thorough explanation of the
theory and proofs related to convergence and error analysis of Algorithm 1, we direct the interested reader to
Butler et al. [2014] and T. Butler et al. (Solving stochastic inverse problems using sigma-algebras on contour
maps, 1407.3851, 2014).

Using a standard Monte Carlo sampling scheme in a Bayesian framework to estimate the posterior
ensures independence and can easily be used to provide estimates of probabilities of events written as
expected values. The convergence of the estimates of probabilities of events is then subject to the well-
known Central Limit Theorem. As described in Butler et al. [2014], Algorithm 1 can be interpreted as a
Monte Carlo approximation to probabilities of events. The key to the convergence results in Butler et al.
[2014] is to understand the approximation of events using results from stochastic geometry that rely on
the Strong Law of Large Numbers, which is a key result used in proving the Central Limit Theorem.
Thus, it may be possible to compare the rates of convergence for either method using similar statistical
tools.

It may also be possible to compare the cost of using an MCMC approach to sample the posterior distribu-
tion for a Bayesian formulation to an importance sampling approach used to place more samples in
regions of high probability within Algorithm 1. This is a key interpretation that would lead to what we
refer to as ‘‘adaptive sampling’’ algorithms within the measure-theoretic approach and is the subject of
future work.

There remains the issue of the effect of numerical error on the computed solution. The effect of numerical
error in solving a computational model pollutes the QoI samples in both the measure-theoretic and Bayes-
ian framework. However, the measure-theoretic framework allows for a straightforward error analysis where
the effect of this deterministic error on the estimated probabilities of events can be quantified. The key to
this part of the error analysis is to use computable a posteriori error estimates (e.g., using an adjoint to the
original model) as a way to identify possible ‘‘mischaracterization’’ of an output sample (i.e., incorrectly
determining Oj in step 7 of Algorithm 1). This type of error analysis for a fixed computational model is
unusual in a Bayesian framework, and to the authors knowledge, has not been carried out.

Addressing these issues in more detail and within the numerics would require a detailed description of
adaptive sampling approaches, adjoint models, and a posteriori error estimates, which is beyond the scope
of this work. We avoid issues of error in the numerics below by using the analytical solution and a suffi-
ciently large number of samples so that all asymptotic bounds on statistical error can be considered
negligible.

4. Numerical Results

Given a set of source and transport parameters, equation (3) can be used to calculate the concentration of
the contaminant at points within the domain of interest. We use the open-source software package Model
Analysis and Decision Support (MADS) (http://mads.lanl.gov; https://gitlab.org/monty/MADS) developed at
Los Alamos National Laboratory, which makes such calculations computationally efficient. Accurate approxi-
mations to the transport solutions are obtained using GNU Science Library (GSL) subroutines. The open-
source software package called BET (https://github.com/UT-CHG/BET) developed by the authors is used to
compute the probability measure.
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When Q : K � Rn ! D � Rd is piecewise differentiable, the implicit function theorem implies that the rank
of the Jacobian of Q is at most min n; df g. This motivates the definition of geometrically distinct (GD) QoI
defined as a set of QoI whose Jacobian is full rank [Butler et al., 2014]. Clearly, there exists at most n GD QoI.
Given m � n possible QoI, we may be able to choose several d � n subsets of the possible QoI that satisfy
the property of being GD. Given two distinct sets of QoI that are GD does not imply that the solutions to
the inverse problem computed from either set will be the same. The quality of a solution to the inverse
problem is affected by how the map Q skews events mapped between L and D. This is similar to the condi-
tion number of a square matrix. A full analysis on the effect of the choice of QoI and the skewness on the
probability measure PK is beyond the scope of this work, and we direct the interested reader to Butler et al.
[2015] for a more thorough discussion. However, we demonstrate in section 4.2 how the choice of GD QoI
can have a large influence on the structure of the inverse probability measure for a low-dimensional param-
eter example where the number of possible QoI is larger than the number of parameters. In the higher-
dimensional numerical example of section 4.3, the number of available QoI from the experiment is strictly
less than the number of uncertain parameters, so we simply use all of the available QoI. The problem of
how to choose an optimal GD subset from a proposed set of QoI by quantifying the skewness is the subject
of on-going research. In section 4.3, we demonstrate how to analyze a probability measure in high dimen-
sions. In section 4.4, we use the probability measure on the higher-dimensional parameter space to make
predictive inferences and analyze various remediation strategies.

4.1. Configuration
The region of interest for the solution to equation
(1) is shown in Figure 3. The region contains 10
wells labeled w1 through w10. The x-y coordinates
of these wells are shown in Table 1. Wells w1–w7
are monitoring wells from which measurements of
the concentration of the contaminant are taken.
Wells w8, w9, and w10 are points of compliance
(PoC). Contaminant concentrations in the PoC are
required to be below a threshold known as the MCL
(EPA, http://water.epa.gov/drink/contaminants). For
this study, the MCL is assumed to be 25 mg/kg. The
measured concentrations of the contaminant are
known at t51 year in the monitoring wells w1–w7
and are listed in Table 1. This model setup and data

Figure 3. The domain of interest for the model problem with wells w1–w10 shown. The red rectangle indicates the potential locations for
the center of the source.

Table 1. Spatial Locations of Wells and Observed Contaminant
Concentrations C at t51 year Taken From Studies in Harp and
Vesselinov [2012]a

Well Name x (m) y (m)
C (mg/kg)

at t51 year

w1 823 1499 7.01
w2 880 1360 180.55
w3 975 1450 339.08
w4 1004 1601 4.97
w5 1106 1401 294.84
w6 1190 1260 3:4731024

w7 1208 1651 1:0531025

w8 1225 1511 n/a
w9 1272 1369 n/a
w10 1377 1534 n/a

a’’n/a’’ 5 unknown. There is no measurement.
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are taken from studies in Harp and Vesselinov [2012].
The contaminants in the PoC are assumed unknown
at time t51 year.

In the numerical results below, we define a proba-
bility measure PD on D in terms of a probability
density qD in the following way. We assume that
any measured datum is subject to uncertainty with
known error bounds for each component of the QoI
map such that each component of the true datum
is within these bounds. With no additional assump-
tions on the structure of the uncertainty within D,
this implies that the true vector-valued datum exists
within a hyperbox centered on this measured
datum and contained in D. In each example, we
specify the size of the hyperbox relative to the size
of a circumscribing hyperbox D. In order not to bias
results too closely to the specific contour mapping
to the measured datum, we take qD to be the uni-
form density on this hyperbox.

4.2. QoI Influence on the Inverse Probability Measure
We first consider the case where there are only three unknown parameters: the x coordinate of the source
x, the y coordinate of the source y, and the contaminant source flux f. Probabilities can be visualized effec-
tively for such a low-dimensional problem. Table 2 shows the possible intervals of the unknown parameters
and the fixed values of the other parameters that are assumed known. The specified intervals for x, y, and f
define the parameter domain K5½210; 1460�3½1230; 1930�3½0:1; 100� where we let k5ðx; y; f Þ (i.e.,
k15x; k25y, and k35f ). Suppose that the QoI are the concentrations of the contaminant in wells w1–w7 after
1 year of contamination, and let qiðkÞ be the concentration in well wi for i51; 2; . . . ; 7 for a given value of
k 2 K. Let q̂i denote the measured concentration in well wi for i51; 2; . . . ; 7 shown in Table 1. To more clearly
demonstrate the influence of the choice of QoI on PK, we focus on using different sets of two GD QoI and pres-
ent some representative examples below.

Suppose qi and qj are the chosen pair of GD QoI so that QðkÞ5½qiðkÞ; qjðkÞ�T for all k 2 K and D5QðKÞ. We
define a probability measure on D following the steps described above. We first define a hyperbox (in this

Table 2. Ranges for Unknown Parameters and Fixed Values for
Known Parameters for Low-Dimensional Inverse Stochastic
Sensitivity Analysis

Unknown Parameters Min. Max.

Source coordinate x (m) 210 1460
Source coordinate y (m) 1230 1930
Contaminant source flux f (kg/year) 0.1 100

Known Parameters Value

Porosity n 0.1
Flow angle h (8) 0
Pore velocity u (m/year) 16
Source size xs (m) 250
Source size ys (m) 250
Source location z0 (m) 0
Source size z1 (m) 1
Reactive decay k (1/year) 0.01
Longitudinal dispersivity ax (m) 70
Transverse horizontal dispersivity ay (m) ax=10
Transverse vertical dispersivity az (m) ax=100
Dispersivity time-scaling factor j 1.2
Initial source time t0 (year) 0
End source time t1 (year) 20

Figure 4. Data points in D associated with the low-dimensional parameter estimation problem. The data points correspond to the QðkÞ5ðq1ðkÞ; qjðkÞÞ for (left) j 5 3 and (right) j 5 7. (In
this case, q1, q2, and q3 are model predicted concentrations at wells w1, w3, and w7, respectively.) The set of data points for each scatterplot correspond to the mapping of the same
i.i.d. uniform samples in K. The red box is the region where the probability is assumed to be uniform and nonzero.
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case, a rectangle since D � R2) centered at ½q̂i; q̂j� of dimensions ð0:3qiðKÞÞ3ð0:3qjðKÞÞ (see Figure 4 for
some representative plots). We apply N553104 independent identically distributed (i.i.d.; in this case, they
are uniform) samples kðjÞ

n oN

j51
in Algorithm 1 to approximate PK.

Figure 5. Computed 2-D marginal probabilities for the (top row) x and y coordinates of the source, (middle row) y coordinate of the source and contaminant source flux f, and (bottom row)
x coordinate of the source and contaminant source flux f obtained by solving the stochastic inverse problem using QðkÞ5ðq1ðkÞ; qjðkÞÞ for (left column) j 5 3 and (right column) j 5 7.
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For low-dimensional QoI spaces such as these, it
is possible to analyze scatter plots of the QoI to
infer the geometric relationship of the data with
respect to the parameters and determine which
QoI map skews events mapped between K and
D the most. We show some representative
QoI scatter plots in Figure 4 for ðq1ðkÞ; q3ðkÞÞ
and ðq1ðkÞ; q7ðkÞÞ (observed concentrations at
w1 versus w3, and w1 versus w7, respectively).
Note that the scatter plot for ðq1ðkÞ; q3ðkÞÞ indi-
cates that the QoI map defined by these compo-
nents maps the rectangular box defining K onto
the Cartesian product q1ðKÞ3q3ðKÞ. This is in
contrast to the scatter plot for ðq1ðkÞ; q7ðkÞÞ
where the specification of one of the compo-
nents severely limits the possible values for the
other component of this QoI map and K is
skewed severely into a nonconvex set that fills
only a fraction of the area of q1ðKÞ3q7ðKÞ.

Figure 5 shows the marginal probabilities for PK

corresponding to the different pairs of QoI dis-
cussed above. All plots of marginal probabilities in this work are computed by defining a regular grid of the
shown parameter (or pairs of parameters) and using the computed PK to approximate the probabilities of the
given intervals (or rectangles) and normalizing by the length (or area) to obtain a simple function approximation
to the density. In order to better illustrate any geometric information imparted to PK by the chosen QoI, we avoid
methods such as kernel density estimation that smooth plots such as these to provide a better visual estimate of
the density function. We see that the geometric information and degree of skewness inherent in the QoI map
has a significant effect on the probabilities in the parameter space. Clearly, using the QoI with better skewness
properties produces probability measures that can identify small regions in parameter space with high probabil-
ity. This is useful when making predictions since fewer samples, and thus model simulations, are required.

4.3. Parameter Estimation in a Higher-Dimensional Problem
Suppose that there are now three unknown source parameters and five unknown transport parameters for a
total of eight unknown parameters: the x coordinate of the source x, the y coordinate of the source y, the con-
taminant source flux f, the porosity n, the flow angle h, the pore velocity u, the dispersivity in the flow direc-
tion ax, and the dispersivity time scaling factor j. Table 3 shows the possible intervals of the unknown
parameters and the fixed values of the other parameters that are assumed known. As before, the parameter
space K is defined by the Cartesian product of the intervals for the unknown parameters. Since there are
seven wells where the concentration is known at t51 year and the parameter space is eight dimensional,
we use the entire set of measurements in wells w1–w7 as the QoI, i.e., QðkÞ5½q1ðkÞ; q2ðkÞ; q3ðkÞ; q4ðkÞ; q5ðkÞ;
q6ðkÞ; q7ðkÞ�T for all k 2 K andD5QðKÞ.

To define PD, we scale each dimension of the circumscribing hyperbox of D by 0.2, and center the resulting
scaled hyperbox at the measured datum ½q̂1; q̂2; q̂3; q̂4; q̂5; q̂6; q̂7�. We take PD to be a uniform probability

measure within this scaled hyperbox. We use N5106 independent identically distributed (i.i.d.; uniform)

samples kðjÞ
n oN

j51
in Algorithm 1 to approximate PK.

In this case, marginal probability plots provide limited insight into the structure of a probability measure in
eight dimensions. For example, Figure 6 shows the 1-D marginal probabilities associated with each of the
unknown parameters. Some of the marginal probabilities yield useful information in cases where the proba-
bility measure and structure of the generalized contours localize the probability to small ranges of certain
parameter values. For example, the marginal densities for the x and y locations of the source have quite dis-
tinct peaks, indicating high probability for those locations in parameter space. It also appears to be proba-
ble that the contaminant flux is in the higher part of its interval; also the distribution has a binomial shape.

Table 3. Ranges for Unknown Parameters and Fixed Values for
Known Parameters for High-Dimensional Inverse Stochastic
Sensitivity Analysisa

Unknown Parameters Min. Max.

Source coordinate x (m) 210 1460
Source coordinate y (m) 1230 1930
Contaminant source flux f (kg/year) 0.1 100
Porosity n 0.05 0.15
Flow angle h (8) 230 30
Pore velocity u (m/year) 6 60
Longitudinal dispersivity ax (m) 10 140
Dispersivity time scaling factor j 1 2

Known Parameters Value

Source size xs (m) 250
Source size ys (m) 250
Source location z0 (m) 0
Source size z1 (m) 1
Reactive decay k (1/year) 0.01
Transverse horizontal dispersivity ay (m) ax=10
Transverse vertical dispersivity az (m) ax=100
Initial source time t0 (year) 0
End source time t1 (year) 20

aNote that the transverse dispersivities ay and az are tied to the
unknown longitudinal dispersivity ax.
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Figure 6. One-dimensional marginal probability density for each of the eight unknown parameters for the high-dimensional parameter
estimation problem.
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Figure 7 shows marginal probabilities for selected pairs of parameters. We note that the plots of Figures 5
and 7 show consistency among the low-dimensional and high-dimensional problems in the ability to iden-
tify small sets of high probability for the source locations (compare the top-left plot of Figure 5 to the
bottom-left plot of Figure 7). However, other than a few interesting features, it appears that any type of
inference or analysis based on these plots is of limited utility.

A useful way to interrogate a probability measure in high dimensions is to identify regions of high probabil-
ity in the parameter space. The construction of the probability measure using Algorithm 1 lends itself to
such an analysis quite naturally. Specifically, we may order by probability all of the implicitly defined Voro-
noi cells associated to each parameter sample. We may then identify the support of the probability mea-
sure, i.e., the event defined by all probable parameters. We can also determine the event of smallest
volume containing certain percentages of the probability, i.e., the event is defined by identifying the small-
est number of high-probability cells required to reach a certain probability threshold. Table 4 summarizes
such an analysis. We obtain several interesting conclusions. First, the volume of the support of PK (defined
as the set in K where the probability density is positive) is roughly 53% of the entire parameter domain vol-
ume. However, we observe that 95% of the probability is contained in 11.6% of the volume of the parame-
ter domain (which accounts for roughly 22% of the support). In other words, the cells accounting for the
smallest 5% of probability define nearly 80% of the support. This implies that most of the probability is con-
centrated in an event of relatively small volume within K. Similarly, we observe that 90% of the probability
is contained in 7.8% of the volume of the parameter domain (which is roughly 15% of the support). This

Figure 7. Two-dimensional marginal probability densities for selected pairs of unknown parameters for the high-dimensional stochastic inverse problem.
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suggests that when making predictions, it may
be possible to ignore large portions of the sup-
port, and subsequently, of K, while maintain-
ing accurate probabilistic predictions based on
small events of high probability. This strategy
is applied in the next section to analyze vari-
ous alternative remediation strategies.

4.4. Predictions
We consider five different types of contami-

nant remediation strategies. In Strategy 1, the termination time of the source release is set to 1 year, i.e.,
t151 year. This models a case where we are able to terminate the contaminant source after a year of con-
tamination, e.g., by removal of the contaminant source. Similarly, in Strategy 2, the source is terminated
after 5 years, i.e., t155 year. In Strategy 3, the first-order reactive decay constant is increased from 0:0 1=
year to 0:1=year. In Strategy 4, the first-order reactive decay constant is increased an additional order of

Table 4. Data for Regions of Highest Probability

PðA � KÞ
Number of

Samples in A lðA � KÞ=lðKÞ

100 442,346 0.53113
95 115,551 0.11616
90 81,081 0.07789
75 37,791 0.03519
50 10,071 0.00914
25 1,083 0.00103

Figure 8. Effect of different remediation strategies for a parameter set randomly selected from the highest probability parameter cell.
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magnitude to 1:0 =year. In Strategy 5, the first-order reactive decay constant is increased further to
10:0 =year. In Strategies 3–5, the changes in the decay constant represent artificially stimulated attenuation
of the contaminants through some induced in situ biogeochemical processes.

Figure 9. Effect of different remediation strategies for a parameter set randomly selected from third highest probability parameter cell.

Table 5. Mean Concentrations (mg/kg) in Wells With Different Remediation Strategies Calculated by Using 100% of the Computed
Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 296.32 22.39 296.32 279.47 121.49 22.02
10 359.12 8.56 62.80 326.78 121.61 22.02

w9 5 207.62 20.72 207.62 193.92 73.59 12.27
10 268.95 8.62 61.34 240.08 73.70 12.27

w10 5 70.43 12.50 70.43 63.88 13.36 0.96
10 113.26 6.53 42.83 96.00 13.44 0.96
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Individual predictions can vary significantly both qualitatively and quantitatively. We are primarily inter-
ested in predictions within the subdomain shown in the plots of Figures 8 and 9 containing the contami-
nant plume focused on the monitoring wells and PoC. This region is where we are interested in making
predictive inferences and studying the effect of remediation strategies. For example, Figures 8 and 9
demonstrate the contaminant levels at t55; 10, and 20 years for each remediation strategy (including the
case of no remediation) for a parameter set taken randomly from the highest and third highest probabil-
ity Voronoi cells, respectively. Despite the probabilities of the Voronoi cells containing these parameters
being high relative to other cells, the orientation and magnitude of the contaminant plume at the pro-
duction wells (w8–w10) vary significantly between these predictions. This demonstrates the fundamental
problem of basing predictive inferences on any single parameter value, e.g., a mean or median value.
Alternatively, one may propagate the probability measure on K to the space of predictions to compute
statistics on the prediction space, e.g., mean predictions and standard deviations of the predictions. In
Tables 5 and 6, we observe the mean prediction and standard deviation of this prediction for the contam-
inant level in each production well subject to each remediation strategy. Based on the means and stand-
ard deviations of the predictions, it appears that either remediation Strategy 1 or 5 does the best job of
reducing the contaminant level below the MCL at the PoC. However, there are two obvious issues with
using this information for prediction. First, the probability measures are clearly nonparametric with
regions of high probability that are often nonconvex, defined by disconnected events, and/or are multi-
modal, so quantitative statistics such as the mean and variance have limited ability to describe the distri-
bution. Second, while the standard deviation is smaller for the remediation strategies 1 and 5, the values
are still quite large relative to the mean, i.e., the coefficient of variation is quite large. This indicates that
the probability distribution is not concentrated near the mean value. Figures 10 and 11 which show prob-
ability density functions also display this tendency.

A far more robust analysis, i.e., an analysis that is less sensitive to outliers, uses the computed probability
measure and identified events of high probability in parameter space to compute probabilities of exceeding
the MCL. We restrict the scope of the analysis to the simplest type of computations involving the direct
solution of all parameter samples in the various events of high probability listed in Table 4, and we discuss
some more computationally efficient alternatives in the conclusions. In Table 7, the probabilities of exceed-
ing the MCL based on propagating a uniform distribution on K to the prediction space. We may consider
this an ‘‘uninformed predictive analysis.’’ This ‘‘uninformed’’ analysis suggests between a 70% and 80% prob-
ability that performing no remediation will result in a reduction of contaminant levels below the MCL while
in every case remediation Strategy 1 appears to outperform remediation Strategy 5.

In Tables (8–12), we show the probabilities that concentrations in the production wells exceed the MCL at
t155 and 10 year for the various remediation strategies conditioned on various events of high probability in
the parameter space. Specifically, Table 8 shows the probabilities of concentrations exceeding the MCL
computed using the entire probability distribution. Note that the probabilities of concentrations exceeding
the MCL computed using 95% of the probability measure produces exactly the same probabilities of con-
centrations exceeding the MCL up to the number of digits reported in this table. Thus, we may obtain these
predicted probabilities by either solving the model on the support of PK or on the smaller event defining
the most probable 95% of parameters. If we solve the model for the samples approximating these different
events, then this implies that we can use roughly one fourth the number of samples to obtain the same pre-
diction as indicated by Table 4.

Table 6. Standard Deviation (mg/kg) of Concentrations in Wells With Different Remediation Strategies Calculated by Using 100% of the
Computed Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 555.21 34.71 555.21 527.94 256.73 50.31
10 631.62 14.29 98.83 584.61 256.86 50.31

w9 5 403.53 25.99 403.53 384.45 193.44 38.74
10 454.97 11.87 78.06 422.08 193.51 38.74

w10 5 178.03 22.68 178.03 165.17 59.60 10.40
10 236.19 11.11 72.60 207.75 59.67 10.40
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Tables (9–12) show that conditioning predictions on even smaller events of high probability shown in Table
4 generally lead to similar probabilistic predictions of contaminant levels. For example, solving the model
for the parameter samples associated with the event containing 75% of the probability overestimates the

Figure 10. Probability densities for contaminant in well w8 at t510 years with different remediation strategies. Probabilities are computed using the solution to the stochastic
inverse problem with remediation (blue), assuming a uniform distribution on K with remediation (black), and using the solution to the stochastic inverse problem with no remedia-
tion (red).
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probability of the contaminant levels exceeding the MCL by only a few percentage points in most cases
while requiring approximately one twelfth the number of model solves. In almost all cases, comparing to
the results from Table 7, we observe that the uninformed predictive analysis generally underestimated the
probabilities of exceeding the MCL for every remediation strategy (with relative errors that vary from 100%

Figure 11. Probability densities for contaminant in well w10 at t510 years with different remediation strategies. Probabilities are computed using the solution to the stochastic inverse
problem with remediation (blue), assuming a uniform distribution on K with remediation (black), and using the solution to the stochastic inverse problem with no remediation (red).

Water Resources Research 10.1002/2015WR017295

MATTIS ET AL. PARAMETER ESTIMATION AND PREDICTION 7625



to 300%) with a few notable exceptions. For Strategy 5, the probability that production well w10 has con-
taminant levels exceeding the MCL in years 5 and 10 is overestimated by the uninformed analysis by an
order of magnitude.

The discrepancies between the uninformed predictive analysis and the predictive analysis using the com-
puted probability measure on K are best explained by the discrepancies in the regions of small but non-
zero probability located in the high-concentration portion in the space of predictions. To highlight the
differences in these regions of the predicted densities, we show some representative semilog plots of
these densities for the production wells w8 and w10 at year 10 in Figures 10 and 11 (the conditional

Table 7. Probability That Concentrations in Wells Will be Above 25 mg/kg With Different Remediation Strategies Sampling Uniformly
From the Parameter Space

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 0.2121 0.0562 0.2121 0.1926 0.1090 0.0619
10 0.2966 0.0165 0.1737 0.2416 0.1091 0.0619

w9 5 0.1806 0.0522 0.1806 0.1672 0.1044 0.0615
10 0.2421 0.0153 0.1449 0.2026 0.1045 0.0615

w10 5 0.1733 0.0498 0.1733 0.1567 0.0879 0.0521
10 0.2520 0.0151 0.1550 0.2020 0.0880 0.0521

Table 8. Probability That Concentrations in Wells Will be Above 25 mg/kg With Different Remediation Strategies Calculated by Using
Either 100% or 95% of the Computed Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 0.68192 0.26152 0.68192 0.66377 0.33233 0.19593
10 0.82678 0.07403 0.60490 0.79628 0.33331 0.19593

w9 5 0.74751 0.26849 0.74751 0.71932 0.25730 0.10659
10 0.88352 0.07220 0.65598 0.85937 0.25796 0.10659

w10 5 0.40410 0.14373 0.40410 0.37875 0.09492 0.00663
10 0.61853 0.04822 0.44968 0.56106 0.09524 0.00663

Table 9. Probability That Concentrations in Wells Will be Above 25 mg/kg With Different Remediation Strategies Calculated by Using
90% the Computed Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 0.69270 0.26374 0.69270 0.67452 0.34033 0.20375
10 0.83749 0.07437 0.61105 0.80739 0.34133 0.20375

w9 5 0.77087 0.27944 0.77087 0.74283 0.27089 0.11250
10 0.89951 0.07492 0.66994 0.87768 0.27158 0.11250

w10 5 0.41027 0.14657 0.41027 0.38500 0.09622 0.00503
10 0.62476 0.04898 0.45271 0.56671 0.09654 0.00503

Table 10. Probability That Concentrations in Wells Will be Above 25 mg/kg With Different Remediation Strategies Calculated by Using
75% the Computed Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 0.72164 0.27929 0.72164 0.70504 0.36144 0.22074
10 0.86160 0.07883 0.63397 0.83458 0.36258 0.22074

w9 5 0.77676 0.26058 0.77676 0.74662 0.23232 0.08483
10 0.90402 0.07141 0.66351 0.88336 0.23297 0.08483

w10 5 0.43297 0.15829 0.43297 0.40670 0.10446 0.00549
10 0.64835 0.05211 0.46967 0.59101 0.10483 0.00549
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predicted densities have similar qualitative and quantitative features so are omitted). The blue curves are
the predicted densities of the contaminant concentration computed using the computed PK. The black
curves are the predicted densities using the uninformed predictive analysis. To make it easier to compare
these densities across the various remediation strategies, a reference density showing the predicted den-
sity with no remediation using the computed probability measure on K is included in each plot as a red
dashed curve. We clearly observe a systematic bias of approximately an order of magnitude in the regions
of low probability of these densities in almost all cases when using such an uninformed predictive
analysis.

5. Conclusions and Future Work

A measure-theoretic framework has been employed to develop and solve the stochastic inverse problem
for groundwater contamination. Measured contaminant concentration data from wells are used in posing
the stochastic inverse problem. It has been shown that the choice of GD QoI from measurement data used
in this process can have a significant effect on the solution. Events of high probability in the parameter
space can be identified and analyzed. Furthermore, the probability measure on the parameter space can be
used to predict the probabilities of other events, for instance, if the concentration of the contaminant in a
well will be above the MCL. It can also be used to calculate probability distributions of model outputs and
accurately estimating probabilities of remediation failure that the uninformed predictive analysis inaccur-
ately estimates. This is critical when making decisions under uncertainty in model parameters.

We demonstrated the predictive analysis by propagating entire events of high probability in the parameter
space requiring many model solves. Posing this problem in terms of simple integrals over the various events
clearly indicates that more efficient Monte Carlo or quasi-Monte Carlo schemes may be used, where we
sample from the identified events of high probability in parameter space rather than simply propagate every
sample used in the construction of the inverse probability measure. This is the subject of on-going work as
we implement additional features in the postprocessing subpackage of the BET Python package used for
the computation and analysis of the inverse probability measure. Moreover, we are investigating adaptive
sampling techniques for improved efficiency in the computation of the inverse probability measure, e.g.,
improving the placement of parameter samples in generalized contour events of highest probability. Finite
element models for the contaminant transport equation are also being developed to solve the problem on
more general physical domains. We are simultaneously developing adjoint codes to provide reliable a pos-
teriori error estimates in computed functionals defining both the QoI used for the inverse problem and the

Table 11. Probability That Concentrations in Wells Will be Above 25 mg/kg With Different Remediation Strategies Calculated by Using
50% the Computed Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 0.78843 0.33309 0.78843 0.77527 0.44397 0.29045
10 0.90346 0.09366 0.68062 0.88682 0.44534 0.29045

w9 5 0.86213 0.28780 0.86213 0.83038 0.25296 0.08209
10 0.96227 0.07914 0.71466 0.95335 0.25356 0.08209

w10 5 0.50825 0.20336 0.50825 0.48242 0.14061 0.00807
10 0.70626 0.06577 0.52442 0.65307 0.14112 0.00807

Table 12. Probability That Concentrations in Wells Will Be Above 25 mg/kg With Different Remediation Strategies Calculated by Using
25% the Computed Probability Measure

Well Time (Year)

Remediation Strategy

None R1 R2 R3 R4 R5

w8 5 0.74246 0.28503 0.74246 0.73050 0.38766 0.16865
10 0.88842 0.07731 0.66533 0.87206 0.39009 0.16865

w9 5 0.86387 0.25580 0.86387 0.82038 0.14962 0.00167
10 0.96744 0.07523 0.69289 0.95755 0.14970 0.00167

w10 5 0.46391 0.16014 0.46391 0.43755 0.08649 0.00000
10 0.66208 0.04786 0.48942 0.60452 0.08662 0.00000
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prediction functionals. Such error estimates have previously been used in other applications to produce reli-
able estimates of the error in the computed probability measure and can be used to guide adaptive sam-
pling strategies (T. Butler et al., Solving stochastic inverse problems using sigma-algebras on contour maps,
1407.3851, 2014).

Effort has been made in the field of uncertainty quantification on using Bayesian and regularization
approaches for performing decision analysis under uncertainty while simultaneously addressing sources of
uncertainties in these approaches [see Freeze et al., 1990; Massmann et al., 1991; O’Malley and Vesselinov,
2014]. One source of uncertainty in the measure-theoretic approach is the choice of ansatz. We are explor-
ing the use of information gap theory [O’Malley and Vesselinov, 2014] to quantify the effects of different
choices of ansatz and the robustness of decisions made using the computed inverse probability measures
under various choices of ansatz.
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